A simple real-space scheme for periodic Dirac operators

نویسندگان

چکیده

We address in this work the question of discretization two-dimensional periodic Dirac Hamiltonians. Standard finite differences methods on rectangular grids are plagued with so-called Fermion doubling problem, which creates spurious unphysical modes. The classical way around difficulty used physics community is to Fourier space, inconvenience having compute decomposition coefficients Hamiltonian and related convolutions. propose a simple real-space method immune problem applicable all lattices. based spectral differentiation techniques. apply our numerical scheme study flat bands graphene subject magnetic fields twisted bilayer graphene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac operators on manifolds with periodic ends

This paper studies Dirac operators on end-periodic spin manifolds of dimension at least 4. We provide a necessary and sufficient condition for such an operator to be Fredholm for a generic end-periodic metric. We make use of end-periodic Dirac operators to give an analytical interpretation of an invariant of non-orientable smooth 4-manifolds due to Cappell and Shaneson. From this interpretation...

متن کامل

Spectral estimates for matrix-valued periodic Dirac operators

We consider the first order periodic systems perturbed by a 2N × 2N matrix-valued periodic potential on the real line. The spectrum of this operator is absolutely continuous and consists of intervals separated by gaps. We define the Lyapunov function, which is analytic on an associated N-sheeted Riemann surface. On each sheet the Lyapunov function has the standard properties of the Lyapunov fun...

متن کامل

A Note on Quadratic Maps for Hilbert Space Operators

In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...  

متن کامل

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

Multiplicities of the Eigenvalues of Periodic Dirac Operators

Let us consider the Dirac operator L = iJ d dx + U, J = ( 1 0 0 −1 ) , U = ( 0 a cos 2πx a cos 2πx 0 ) , where a 6= 0 is real, on I = [0, 1] with boundary conditions bc = Per, i.e., F (1) = F (0), and bc = Per−, i.e., F (1) = −F (0), F = ( f1 f2 ) ∈ H(I). Then σ(Lbc) = −σ(Lbc), and all λ ∈ σPer+(L(U)) are of multiplicity 2, while λ ∈ σPer−(L(U)) are simple (Thm 15). This is an analogue of E. L....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Sciences

سال: 2021

ISSN: ['1539-6746', '1945-0796']

DOI: https://doi.org/10.4310/cms.2021.v19.n6.a12